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Abstract
We investigate the photoresistance of a magnetically confined quantum wire in which
microwave-coupled edge channels interfere at two pinning sites in the fashion of a
Mach–Zehnder interferometer. The conductance is strongly enhanced by microwave power at
B = 0 and develops a complex series of oscillations when the magnetic confinement increases.
Both results are quantitatively explained by the activation of forward scattering in a multimode
magnetically confined quantum wire. By varying the strength of the magnetic confinement we
are able to tune the phase of electrons in the arms of the interferometer. Quantum interferences
which develop between pinning sites explain the oscillations of the conductance as a function of
the magnetic field. A fit of the data gives the distance between pinning sites as 11 μm. This
result suggests that quantum coherence is conserved over a distance three times longer than the
electron mean free path.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Spatially inhomogeneous magnetic fields provide an alterna-
tive means of confining two-dimensional electron systems to
electrostatic potentials. The channelling of two-dimensional
plasmas has thus been obtained. Commensurability resistance
oscillations [1–3] and channelling giant magnetoresistance [4]
are examples of semiclassical effects resulting from the guided
motion of electron trajectories by a gradient of magnetic field.
Diffusive and ballistic transport through magnetic field barriers
has equally been investigated [5–10]. The inclusion of the spin
degree of freedom in magnetic edge states has recently brought
to attention the possibility of exciting spin resonance by driving
a current through a gradient of magnetic field [11–13] and the
feasibility of polarizing spin currents [14, 15]. While the above
effects are semiclassical, quantized energy subbands are antic-

ipated in magnetic dots, superlattices, magnetic barriers and
magnetic gradients. To date, the magnetic structure of a mag-
netic superlattice has been revealed experimentally [16, 17].
The resolution of individual magnetic subbands in magnetic
dots and magnetic gradient has been complicated by the fact
that magnetic edge states do not ballistically connect to the
contacts of a Hall bar, unlike the edge states of the quantum
Hall effect. For this reason, it is expected that quantized mag-
netic subbands could be more easily accessible via optical ex-
citation.

Here, we report quantum interferences in a multi-channel
magnetic quantum wire (MCQW) coupled by a microwave
field at two pinning sites where electrons experience forward
scattering [18, 19]. We use a magnetic field to tune the phase
difference between charge density waves propagating in each
channel. Their interference give a magnetic field dependent

0953-8984/09/025303+08$30.00 © 2009 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/21/2/025303
mailto:A.R.Nogaret@bath.ac.uk
http://stacks.iop.org/JPhysCM/21/025303


J. Phys.: Condens. Matter 21 (2009) 025303 A Nogaret et al

transmission through the second pining site which we detect
through oscillations in the magnetoresistance. Experimental
data fit quantitatively the response of a 14 mode channel
confined by a spatially varying magnetic field [3, 4] and yield
the distance between pinning centres (11 μm) as the only
adjustment parameter. This novel type of long range quantum
interferences, possibly enhanced by Coulomb interactions,
elicits applications to terahertz detectors.

The paper is organized as follows. Section 2 describes
the electronic structure of magnetically confined quantum
wires. Section 3 reports experimental transport measurements
in magnetically confined quantum wires under microwave
irradiation. Section 4 interprets and fits the data based on
the activation of forward scattering in the MCQW. Section 5
discusses the origin of pinning centres and examines alternative
interpretations. Section 6 summarizes the results.

2. Magnetic quantum wires

Magnetically confined quantum wires (MCQW) were obtained
by fabricating dysprosium micro-strips of length L = 40 μm,
width w = 200 nm and height h = 150 nm at the centre
of narrow Hall bars 1.6 μm wide and 32 μm long. A two-
dimensional electron gas (2DEG) with density ns = 4.0 ×
1011 cm−2 and mobility μ = 0.31 × 106 cm2 V−1 s−1 was
confined by a shallow GaAs/AlGaAs quantum well set t =
30 nm below the surface. Hall bars [9, 10] were fabricated
with six pairs of voltage probes spaced by 2, 4, 8 and 16 μm.
A magnetic field, B , was applied in the plane of the 2DEG,
perpendicular to the long axis of the strip, as shown in the
inset to figure 1. Increasing B from zero has the effect of
tilting the magnetization, initially along the long axis of the
strip, towards the short axis hence increasing the perpendicular
magnetization M⊥. As a result, the 2DEG was exposed to a
fringing magnetic field, Bm(x), oriented perpendicular to the
plane and varying across the width of the channel. Its peak
amplitude increases from 0 to ±0.9 T when μ0 M⊥ increases
from 0 to saturation at 3.7 T. The external magnetic field, B ,
was aligned in the plane to a high accuracy (<0.8◦) so that
it has no direct effect on the 2DEG. An optically transparent
titanium film (30 nm thick) capped the magnetic wire to screen
residual electrostatic potentials and to protect the dysprosium
from oxidation. Samples were cooled to 1.3 K in a variable
temperature insert. Microwaves were applied using an over-
moded circular waveguide terminated by a linear polarizer
(
−→
E ⊥ wire). Because the sample was mounted parallel to the

magnet axis, a 45◦ mirror was used to redirect power onto its
surface. The output power was varied from 0 to 20 mW using
a variable attenuator. The photoresistance was measured under
quasi dc conditions using a small current excitation (100 nA)
which gave a spectral width (∼0.1 mV) comparable to thermal
broadening.

Magnetically confined quantum wires trap 1D magnetic
edge states in magnetic field gradients. We obtain the
fringing magnetic field semi-empirically using the following
magnetostatics formula:

waveµ

Bm

Dy

2DEG

B

1 mµ

Figure 1. Microwave induced forward scattering. Main panel:
resistance of a MCQW (200 nm wide, 24 μm long) with and without
microwave irradiation. The resistance at B = 0 drops by over an
order of magnitude when the microwave power is increased from 0 to
20 mW. Top inset: a MCQW forms in a 2DEG confined laterally by
the stray magnetic field, Bm(x), emanating from a microscopic bar
magnet. The external magnetic field, B, is applied in the plane to
increase the perpendicular magnetization which in turn increases the
depth of the magnetic quantum well. The photoresistance is
measured via four-terminal phase-locked detection under microwave
irradiation. Bottom inset: dependence of the photoresistance on
microwave power at B = 0, 7.5 and 15 T. The 0 and 7.5 T traces
show a linear resistance decrease. The 15 T curve is essentially
flat—only a small increase in resistance due to microwave heating is
detectable.
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Equation (1) is an exact result for an infinitely long stripe
of width w, height h which is uniformly magnetized, and
stands at distance t from the 2DEG. The depth of the 2DEG
is known to within one semiconductor monolayer (�t/t =
2%). The width of fabricated strips fluctuates by 15 nm
and the strip height is usually known to better than 5 nm
giving experimental errors of �w/w = 7.5% and �h/h =
3% respectively. The transverse magnetization is obtained
from Hall magnetometry (see below) and is also known to
within 5%. For symmetry reasons, the magnetic modulation
is independent of the longitudinal magnetization M‖. This is
why Hall curves only measure M⊥. The precise knowledge of
all parameters entering equation (1) suggests that the calculated
magnetic field profile will be close to the real one. Hall
resistance measurements performed on several dysprosium
strips are free from switching behaviour. This suggests the
smooth tilting of the magnetization from the longitudinal to
the transverse direction. This justifies the use of equation (1)
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not only at high B when the magnetization is saturated but
also over the whole B range. By insert the experimental
magnetization curve, M⊥(B), in equation (1), we compute the
magnetic profile Bm for any value of the applied B .

Since Bm(x) changes sign at x = 0, it follows that
the Lorentz force deflects electrons back and forth across the
contour of zero magnetic field at the centre of the strip. This
binding force derives from a 1D magnetic potential which we
now calculate. Using the Landau gauge, the vector potential is
given by Ay(x) = ∫ x

0 dχ Bm(χ) where the origin of the vector
potential is set at x = 0. The potential energy binding the
electron oscillator is given by V (x, ky) ≡ h̄2

2m∗ [ky + e
h̄ Ay(x)]2

where m∗ is the electron effective mass and ky is the electron
momentum along the wire. The energy–momentum dispersion
curves of a magnetic potential well induced by a step, ramp
and spike of magnetic field have been calculated [6, 7].
Here, we refine these calculations by considering the realistic
magnetic barrier profile given in equation (1). This has
two advantages. Firstly, the observed absorption peaks
can be interpreted quantitatively and indexed with specific
intersubband transitions. Secondly, equation (1) accounts for
the real magnetic edge state structure in the vanishing magnetic
modulation of the channel boundaries which was not treated
previously. These edge states are peculiar in that they are
chiral free electron states. They also differ from the magneto-
electric edge states of the quantum Hall effect as they are too
weakly confined relative to kBT to support ballistic currents.
The magnetic potential in figure 2(a) is calculated by assuming
that the transverse magnetization is saturated, μ0 M⊥ = 3.67 T,
a situation which is obtained by applying a large B . A quantum
well forms at the centre of the channel which is the confining
potential of the MCQW. Moving away from the centre of
the channel, at |x | > 200 nm, the magnetic modulation
decreases with the effect that V (x, ky) tends to the free electron
dispersion curve. The central quantum well has depth of
25 meV, sufficient to confine the Fermi sea (14.3 meV), and
width of ∼200 nm, which supports energy subbands separated
by ∼0.5 meV. The energy subbands En(ky) are plotted in
figure 2(b) after numerically solving Schrödinger’s equation in
potential V (x, ky).

Transport along the MCQW is ballistic. At the
temperature where experiments are conducted, T = 1.3 K,
the energy spacing between the 12 lowest subbands is ∼5kBT
which means that individual subbands can be experimentally
resolved. Here kB is Boltzmann’s constant. For negative
values of ky , quantum states split into bonding and antibonding
subbands which have different energies but are localized in
the same region of space—the MCQW. When ky increases,
bonding and antibonding states become degenerate as they
localize in the two potential wells on each side of the MCQW.
One therefore has 2N magnetic edge states which drift in
the negative y-direction at the centre of the MCQW and N
counter-propagating free electron states near each edge of the
Hall bar. This edge channel picture is summarized in the
inset to figure 2(b). A difference with the edge channels
of the quantum Hall effect is that, magnetic edge channels
are not ballistically connected to voltage probes. Magnetic
edge states are sequestered in the MCQW whereas counter-
propagating free electron edge states need scattering processes

E
(m

eV
)

Figure 2. Energy subbands of a magnetically confined quantum
wire. (a) Magnetic potential V (x, ky) induced by the stray magnetic
field Bm(x) when the bar magnet is magnetized to full strength in the
perpendicular direction: μ0 M⊥ = μ0 Msat = 3.67 T. The MCQW
forms in the potential well at the centre of the channel. The Fermi
sea is shown in dark blue. (b) Quantum energy subbands En(ky)
supported by potential V (x, ky). Magnetic edge states—bound to the
MCQW—are found at the left of the shadowed parabola. To the
right, the bonding/antibonding pairs are virtual subbands lying above
the MCQW potential barrier. Further to the right, the group velocity
changes sign and follows the free electron dispersion curve. Free
electron edge states form at the edges of the Hall bar where Bm

vanishes. The length scale is lb = √
h̄/e = 25.7 nm. Inset: edge

states in magnetically modulated Hall bar.

to remain in thermal equilibrium with the contacts. At low
temperature, these states are more likely to conduct through
optical activation. Chiral free electron edge state are more
weakly confined than MCQW subbands. In fact, the top right
quadrant of figure 2(b) shows energy gaps becoming smaller
than kBT which suggests that free electron edge states will
be smeared into a continuum. It is therefore anticipated that,
at 1.3 K, transport will be ballistic inside the MCQW and
diffusive elsewhere.

MCQWs present a number of advantages over electro-
static quantum wires: the depth of the magnetic well is contin-
uously tunable from zero to about 25 meV. Equation (1) states
that the magnetic modulation is proportional to M⊥ hence it is
sufficient to know the magnetization curve to obtain the depen-
dence of the magnetic potential on B . The magnetic potential
modifies the Fermi surface without affecting the electron den-
sity and mobility unlike for electrostatic potentials.
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Figure 3. (a) Photoresistance of the MCQW measured across voltage
probes separated by 4 μm. When microwave power increases from 0
to 20 mW, the B = 0 resistance drops by 2%. (b) The same
measurement when B is rotated by 90◦ in order to magnetize the
stripe along its long axis. The contact spacing is now 12 μm.

3. Experimental results

Figure 1 shows the resistance of the MCQW with and
without microwave irradiation when measured across voltage
probes separated by 24 μm. The zero-field resistance drops
by over an order of magnitude from 7.1 to 0.6 k� when
microwave power increases from 0 to 20 mW (�R/R =
−92%). In comparison, the unmodulated Hall bar in the
dark has resistance of 0.18 k�; a value consistent with the
resistance of a channel of nominal width supporting 75 modes.
It therefore appears that the resistance of the magnetically
modulated channel drops by over an order of magnitude
when microwaves are switched on. In contrast the resistance
drops across voltage probes separated by 4 μm is much
smaller. Figure 3(a) shows that �R/R = −2% at maximum
microwave power. The magnitude of the photoresistance
therefore appears to increase with the wire length. The
magnetoresistance shows a rich and complex structure with B
applied in the plane. We demonstrate that these oscillations
arise from the magnetic potential by rotating the applied B by
90◦ to align it parallel to the stripe. The magnetoresistance
without magnetic modulation varies monotonically as shown
in figure 3(b). The stripe being magnetized along its long
axis, the magnetic modulation vanishes and correspondingly,
oscillations disappear. This behaviour is consistent with the
magnetoresistance of the unmodulated 2DEG in an in-plane

Figure 4. Frequency dependence. (a) The longitudinal resistance
displays two series of oscillations. The low field series (a, b, c, d, . . .)
has peaks which move linearly with f . The peaks in the high field
series (A, B, C . . .) fluctuate about an average value which is
independent of frequency. Curves are vertically offset by 3 k�. Inset:
magnetization reversal of dysprosium as evidenced by the
longitudinal magnetoresistance. (b) Fan chart of peak positions.
The dot size indicates the amplitude of experimental peaks. The blue
lines are the theoretical fan fitted to the low field series. The red
arrows indicate the theoretical peak positions of the high field
series—see the text.

magnetic field under microwaves [18]. The most notable
features are two series of magnetoresistance oscillations and
the return of the resistance to its level prior to irradiation
when B > 9 T. The photoresistance at constant B is shown
in the inset to figure 1. The photoresistance drops linearly
with microwave power for B = 0 and 7.5 T. By contrast, the
B = 15 T curve is independent of microwave power.

Figure 4(a) displays magnetoresistance oscillations at
microwave frequencies between f = 80 and 110 GHz. The
observed oscillations arise from the spatially varying magnetic
field, Bm(x) whose strength increases with B . This assertion
is based on the observation that the magnetoresistance curve
changes amplitude depending on the direction of field sweep.
The hysteresis effect is associated with magnetization reversal
in the finger gate, see inset to figure 4(a). Secondly, figure 3(b)
shows that the device exhibits no magnetoresistance when
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the magnetization is longitudinal (no modulation). The fan
diagram in figure 4(b) maps the position of individual peaks
in the f –B plane. One distinguishes two series of oscillations.
The low magnetic field series has peaks labelled (a–f) whose
positions vary linearly with f . Peak (a) moves to lower
magnetic field whereas peaks (b–f) move to higher magnetic
field. Peaks (A, B, C) are distinguished from the first series
by being independent of microwave frequency. Fluctuations
in the peak positions of the (A, B, C) series arise because
the transverse magnetization is nearly saturated-to within 4%.
Near saturation, the slope of the magnetization curve is nearly
flat. Small fluctuations in magnetization between sweep up and
sweep down traces will be corrected by applying a magnetic
field much larger than for identical fluctuations taking place at
low magnetic field where the magnetization curve is steeper.
This explains the wobbling of peaks at high B in figure 4(b).

4. Interpretation

The photoresistance and magnetoresistance data can be
interpreted in a coherent way by assuming a 1D correlated
electron system pinned by scatterers. These weak links
are most likely to arise from unintentional defects in the
finger gate which locally relax magnetic confinement. At
these points, the smaller energy separation between magnetic
subbands allows microwave absorption over a wide range of
microwave frequencies. Topological defects, either magnetic
or originating from impurities, are smooth on the scale of
the Fermi wavelength (≈1 nm) hence satisfy the adiabatic
condition that allows forward scattering under microwave
irradiation [20]. In the absence of microwaves, pinning centres
backscatter electrons. This is because they accumulate electric
charge which blockades quantum tunnelling at weak links, an
effect which is enhanced by Coulomb interactions [21, 22].

A sophisticated theory of microwave absorption in
multimode channels has been constructed by Krive et al
[20]. These authors show that dipole-like charge density
perturbations created by intersubband transitions renormalize
the tunnelling rates through pinning centres. Under conditions
where subbands involved in the transition have different
velocities, these electric dipoles enable the tunnelling of charge
density waves across pinning centres. If the microwave heating
is inhibited as a result of a perturbation applied to the system,
forward scattering will be switched off and the resistance
will return to its level in the absence of irradiation. This is
precisely what happens at high magnetic field. Increasing B
increases the energy gaps between magnetic subbands in the
MCQW to the point where they become too large to absorb a
microwave photon. The quantitative analysis done below sets
the absorption edge at 8 T at 90 GHz which matches the onset
of the resistance plateau seen in figure 1.

Forward scattering reveals itself in more dramatic fashion
in the magnetic field dependence of the resistance which
we now describe. MCQWs have chiral edge states which
by definition circulate in only one direction. This has the
consequence that charge density excitations circulating along
parallel channels will interfere in the fashion of a Mach–
Zehnder interferometer if each path splits at one pinning centre

and interact again at the next. This interferometer is shown
in figure 5(a). Two weak links pin the electron channel at y
and y + d . In the absence of microwaves, these pinning sites
block transmission and cause charge accumulation as reported
above. However in the presence of a microwave field tuned
at the frequency of the inter-mode electron transition, electric
dipoles allow a finite tunnelling probability through the pinning
sites [12, 13]. Two hybridized charge density waves propagate
between y and y + d . These have velocity given by:

s± = vlF + vuF

2
+ V0

π h̄
± vlF − vuF

2

√
1 + K 2 (2)

where vlF and vuF are the Fermi velocities of the lower and
the upper channel, V0

∼= e2/4πε is the Coulomb interaction
and K = V0/h̄(vlF − vuF) is the effective coupling strength
between channels [19]. ε is the dielectric constant of GaAs and
e is the electron charge. When Bm is maximum, one obtains
K = 18. Since K will invariably increase for smaller Bm, the
MCQW belongs to the strong coupling regime: K � 1. In
which case, the speed of hybridized charge density waves is
independent of (vlF − vuF) hence independent of the magnetic
field. These modes decay as d−λ where λ± ≡ 1±K/

√
1 + K 2.

The mode, λ−, clearly dominates and is retained for fitting the
peak positions. Theory predicts that this mode will absorb
microwave power according to a sin(�) function [19] where
sin(�) is the phase factor given in the left-hand side of
equation (3). Maxima of power absorption occur when:

(klF − kuF − 2π f/s+) d + π

2

K√
1 + K 2

= π

2
+ 2nπ (3)

where n is an integer and klF − kuF is the difference of Fermi
wavevector of the lower and upper channels. The klF−kuF term
carries the dependence on B . Hence equation (3) describes a
fan diagram in the f –B plane that has parallel branches, each
indexed by n.

A quantitative fit of the experimental data requires
knowing the magnetization curve M⊥(B). Figure 5(b) shows
the magnetization curve measured by Hall magnetometry. The
experimental curve is interpolated with the function shown in
the caption. The latter is used to calculate the B-dependence of
energy levels, shown in figure 5(c), and the B-dependence of
klF − kuF. Inserting the latter into equation (3) gives the slope
of every branch in the fan without any adjustment parameter.
In contrast, the spacing of two consecutive branches, n and
n + 1, depends on distance d which we can extract from a fit
to the data. The best fit to figure 4(b) gives d = 11 ± 0.5 μm
(blue lines). This implies that quantum interferences take place
over a distance three times larger than the electron mean free
path. The magnetic edge channel picture also explains why
the fan only appears at low B . The energy gaps between
MCQW subbands increase with B up to the point where
interchannel transitions are forbidden by energy conservation.
The theoretical absorption edge obtained from figure 5(c) runs
from 4.5 T at 50 GHz to 8.0 T at 110 GHz. This fits very nicely
the upper boundary of the experimental fan in figure 4(b).

We finally address the origin of the high magnetic field
series. This series is non-resonant (as independent of f ) and
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y y+d

vuF

vlF

(b)(a)

(c)(d)

Figure 5. Quantum interferences of magnetic edge channels in MCQW. (a) Resonant microwave absorption couples two channels and
enhances forward scattering at weak links (e.g. impurities) located at y and y + d . Electron transmission through the interferometer depends
on the difference in Fermi wavevectors and Fermi velocities of the lower and upper channels. (b) Transverse magnetization curve of a
dysprosium bar—the up/down sweeps correspond to the blue/red curves. Theoretical fit: M⊥/Msat = 0.6 tanh(8B) + 0.4 tanh(0.16B) (black
curve). (c) Quantum energy levels En(ky = 0, B) calculated as a function of the applied magnetic field using the empirical magnetization
curve. Blue (green) arrows show the electron transitions allowed at 110 GHz (50 GHz). B (A) is the upper limit of microwave absorption at
110 GHz (50 GHz). (d) The theoretical fan chart shows the microwave absorption frequencies of the two-mode as a function of the magnetic
field. The absorption maxima are labelled n = 6, 7, 8, 9, 10 (blue curves) and n = 13, 14, 15 (red curves) as explained in the text. The dotted
line (A–B) is the absorption edge. The distance d = 11 μm is the only adjustment parameter in the theory.

may be ascribed to charge density waves excited indirectly,
perhaps in the contacts. Setting f = 0 in equation (2)
allows to calculate the maxima of microwave absorption as
a function of n. The resulting theoretical positions are the
red arrows in figure 4(b) which fit the experimental lines.
We summarize our findings by mapping the theoretical peak
positions in figure 5(d). These replicate the major features of
the experiment.

5. Discussion

The above interpretation rests on the existence of weak links
whose origin should be clarified. High resolution electron
micrographs and topographic profiles of the magnetic strip
were taken. The latter, in figure 6, shows that the width of
the finger gate fluctuates by 15 nm at the top whilst sidewalls
become smoother closer to the base. These fluctuations
are too weak to give micro-widenings absorbing microwaves
continuously over the 75–110 GHz frequency range. Besides
the correlation length of edge roughness, ∼300 nm, is too
small to explain the 11 μm spacing between pinning centres.
A more plausible explanation is the local weakening of the
magnetic structure. This can occur for reasons such as the
build-up of strain at the semiconductor/dysprosium interface
or the contamination of dysprosium by exposure to air.

Figure 6. High resolution AFM scan of the magnetic strip showing
edge roughness.

If one ignores the existence of pinning centres, what are
the other possible sources of resistance oscillations? Fitting
the data with a single particle picture suffers the following
objections. Firstly, a local relaxation of the magnetic potential
perturbs the transmission of all edge channels in the same
way. The transfer of an electron from one subband to another

6
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which has the same conductance will not change the overall
conductance. Unless the transition occurs between a localized
and an extended state, the overall conductance does not change.
Secondly, the amplitude of oscillations is too large to be
explained in terms of resonant microwave absorption. One
also sees in figure 2(b) that En(ky) curves are gapless and
several pairs of subbands are simultaneously tuned to the same
photon energy. Microwaves are thus absorbed continuously
over a range of photon energies and magnetic fields up to the
absorption edge. The amplitude of the observed oscillations is
consistent with charge density waves.

We have also considered classical edge plasmons as a
second possible explanation. The voltage contacts of the
Hall bar break the translational invariance of the 2DEG and
create oscillating electric dipoles which emit plasma waves.
A perpendicular magnetic field causes the circulation of these
plasma waves near the edge of the Hall bar in a direction
determined by the sign of the magnetic field. Kukushkin et al
[23] have shown that edge plasmons emitted by two contacts
will interfere constructively or destructively depending on
whether an even or odd number of half-wavelengths fit between
them. The perpendicular magnetic field reduces the plasmon
velocity as ∝1/B hence changes the interference conditions
as more half-wavelengths fit in the distance between contacts.
In our sample, the distance between contacts is however
much smaller than the plasmon wavelength. In [19], contacts
separated by L = 0.5 mm support oscillations with a period of
200 mT at f = 53 GHz. Since the period scales as ∝ns/ f L,
edge magneto-plasmon oscillations in our system would have
period of 2.9 T across 24 μm contacts at f = 100 GHz.
Not only is this period far larger than the period of our
measured oscillations but the field orientations are different.
The perpendicular magnetic field at the edges of our sample
is zero (it remains less than ±100 mT until half-distance from
the centre). Hence the formation of edge magneto-plasmons
can be entirely ruled out.

6. Conclusion

In summary, we have measured microwave activated
transport in a two-dimensional electron system confined
by a spatially varying magnetic field. The magnetic
potential quantizes electrons in ballistic edge channels as
demonstrated by the existence of an absorption edge in
the magnetoresistance. Namely, microwave absorption is
suppressed when the intersubband energy becomes larger
than the photon energy. The observed photoresistance and
magnetoresistance oscillations both arise from the activation of
forward scattering at pinning sites in the wire. These pinning
sites cause individual modes to interfere with the effect of
modulating the wire conductance. By varying the strength of
the magnetic potential, we have tuned the Fermi wavevector
of individual quantum subbands and controlled the phase of
plasma waves in the interferometer. This physical picture
quantitatively fits the data with a single adjustment parameter
which is the distance between pinning sites.
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